
Jan Schmidt
Email: jan@centricular.com
IRC: thaytan Twitter: @thaytan

A GStreamer TutorialA GStreamer Tutorial

mailto:jan@centricular.com

Goals

● Provide you with a high-level understanding of GStreamer
concepts

● Make you comfortable with using GStreamer tools,
applications and plugins

● Show techniques for debugging GStreamer, plugins and apps
● Provide you with more understanding how to best use it
● Encourage you to help improve it ! :-)

House Rules

● Don't just sit back
● Ask me questions! (at any time)
● Relate topics to situations you might have already

encountered while working with GStreamer
● GStreamer is a massively vast code base and framework

– it's easy to forget to mention something or make some
connection – please help me fill any gaps

Tutorial Code

● https://github.com/thaytan/gst-tutorial-lca2018

(https://goo.gl/HvLFB1)
● GStreamer development packages:

– dnf install gstreamer-tools gstreamer1-devel gstreamer1-plugins-*
gstreamer1-libav gstreamer1-rtsp-server gstreamer1-rtsp-server-devel

– apt-get install gstreamer1.0-tools libgstreamer1.0-dev gstreamer1.0-
plugins-* gstreamer1.0-libav libgstrtspserver-1.0-0 libgstrtspserver-
1.0-dev

https://github.com/thaytan/gst-tutorial-lca2018
https://goo.gl/HvLFB1

Introduction

My credentials

Introduction

The depths of UTS
(but 2003)

What is GStreamer?

● An Open Source Pipeline-based Cross-Platform Extensible
Multimedia Framework

● Not:
– A Media Player
– A Codec or protocol library
– A Transcoding Tool
– A Streaming Server

● But can be (and is) used to implement all that

Overview

● Goals
– Flexible and extensible design
– Easy to integrate with other software

(in both directions)
● Large, active developer and user community
● Ecosystem of companies providing services around GStreamer

and companies building their own products and services on top
of GStreamer

GStreamer Applications

● Media players
● Audio/video editors, music composers
● Voip/video communication
● Web browsers
● Transcoders
● Streaming servers and clients
● … and many more

JAXA Int-Ball

GStreamer 0.10 vs. 1.x

● 0.10 no longer supported by the community

● All major software ported to 1.0

● No reason to develop new software with 0.10

Architecture

GStreamer Core

● Hierarchical pipelines
– Bins containing Elements, linked by Pads

● Communication
– Buffers, Events, Queries, Messages

● Format negotiation
● Scheduling and synchronization
● Plugin registry
● Media/format agnostic: does not know anything about audio/video/etc.

https://www.flickr.com/photos/23925401@N06/24342686634
[CC BY 2.0]

https://www.flickr.com/photos/23925401@N06/24342686634

Pipeline Building Blocks – Elements

● With always Pads

● or sometimes or request Pads

Pipeline Building Blocks – Pads

● Source pads produce data
● Sink pads consume data

Caveat: terminology

● Beware of confusing terminology overlap
– „Source“ is often abbreviated as „src“ in class names, enums or

variable names
– Depending on the context, „source“ or „src“ may refer to a source

element or a source pad
– Similarly, „sink“ may refer to a sink element or a sink pad depending

on the context

Element States

● NULL: Deactivated, element occupies no resources
● READY: Check and allocate resources
● PAUSED: pre-roll, i.e. get a buffer to each sink
● PLAYING: active dataflow, running-time is increasing
● State changes always go through intermediate states, i.e. NULL-READY-

PAUSED-PLAYING
– GStreamer core handles that automatically

● Upward state changes can be asynchronous
● Downward state changes are always synchronous

Plugins & Registry

● Plugins provide additional features dynamically
– Element factories to instantiate elements
– Type-finders to detect the format of a file
– Device monitors for listing available devices and capabilities
– Contain introspectable information about features
– e.g. new codecs, filters, …

● Per-user and system wide plugin paths
● Stored in a registry, cached on the file system

– Applications can check available features without loading plugins by checking the Registry
● Plugins may be linked statically (e.g. Android)

GStreamer Tools – gst-inspect-1.0

● Prints details and features of a plugin or of a GstElement factory
● Uses the GStreamer registry
● Examples:

– gst-inspect-1.0
– gst-inspect-1.0 -a (good for grepping)
– gst-inspect-1.0 /path/to/libgstcoreelements.so
– gst-inspect-1.0 coreelements (plugin name)
– gst-inspect-1.0 identity (element/feature name)

GStreamer Tools – gst-inspect-1.0

$ gst-inspect-1.0 coreelements

Plugin Details:
 Name coreelements
 Description GStreamer core elements
 Filename /usr/lib64/gstreamer-1.0/libgstcoreelements.so
 Version 1.12.4
 License LGPL
 Source module gstreamer
 Source release date 2017-12-07
 Binary package Fedora GStreamer package
 Origin URL http://download.fedoraproject.org

 capsfilter: CapsFilter
 fakesrc: Fake Source
 fakesink: Fake Sink

GStreamer Tools – gst-inspect-1.0

$ gst-inspect-1.0 identity

Factory Details:

 Long name:Identity

 Class: Generic

 Description:Pass data without modification

 Author(s): Erik Walthinsen <omega@cse.ogi.edu>

 Rank: none (0)

Plugin Details:

 Name: coreelements

 Description: standard GStreamer elements

 Filename: /usr/lib/x86_64-linux-gnu/gstreamer-1.0/libgstcoreelements.so

GStreamer Tools – gst-launch-1.0

● Provides a simple language to build pipelines and run them
● Mostly a debugging tool but can be very useful

– Available as C API too for integration into applications
● Verbose (-v) parameter for more information

GStreamer Tools – Example 1

● Run a pipeline:
– gst-launch-1.0 audiotestsrc ! audioconvert ! autoaudiosink

● This is audio, of course you can do the same with video
– Check with gst-inspect-1.0 what the names of the corresponding

video elements are and use them

Element Properties & Signals

● Elements can have
– Properties, used by the application to modify the behaviour, mostly used for

configuration
– Signals, that the application can hook into to get notifications or to execute a function

call on the element (action signals)
● Different for every type of element
● Introspectable at runtime

– Names, types/signatures, descriptions
● Plugins provide no header files,

GObject and GStreamer API is the only API there is !

Element Properties & Signals

$ gst-inspect-1.0 playbin

[...]

Element Properties:

 name : The name of the object

 flags: readable, writable

 String. Default: "playbin0"

[...]

 connection-speed : Network connection speed in kbps (0 = unknown)

 flags: readable, writable

 Unsigned Integer64. Range: 0 - 18446744073709551 Default: 0

 buffer-size : Buffer size when buffering network streams

 flags: readable, writable

 Integer. Range: -1 - 2147483647 Default: -1

[...]

GStreamer Tools – Example 2

● Building on the pipeline from before:
– gst-launch-1.0 audiotestsrc ! audioconvert ! autoaudiosink
– gst-launch-1.0 videotestsrc ! videoconvert ! autovideosink

● You can set properties in gst-launch-1.0 too, e.g.
– audiotestsrc prop=value ! ...

● Check in gst-inspect-1.0 what kind of properties the source elements have and
set different ones

● What happens if you set unknown properties or values that are outside the valid
range?

● Try doing audio and video in the same pipeline

Element Linking – Pads

● Elements can be linked on their Pads to define the dataflow
– Must be compatible: opposite direction (src→sink) and compatible

capabilities (Caps)
● Pads are created from Pad Templates

– Containing name (template), direction, availability and all possible
Caps of the Pads

– Availability: always, sometimes or request Pads
– Pad templates are what is shown in gst-inspect-1.0

Caps

● Define a media format, e.g.

 video/x-h264, width=(int)1920, height=(int)1080,
 stream-format=(string)byte-stream, alignment=(string)au,
 level=(string)5,framerate=(fraction)25/1

● Terminology:

– video/x-h264 = „media type“ (not MIME type)
– width / height / stream-format / alignment / level = „field“
– int / string / fraction / etc.: „field type“ (often omitted)
– media type + optional fields = a „structure“ (GstStructure)

Caps

● made of one GstStructure („simple caps“):

video/x-h264, width=...;

or multiple GstStructures:

video/x-h264, … ; video/mpeg, … ;

● Can be fixed or unfixed, i.e. multiple structures or one of the
fields has ranges or lists.

video/x-h264; video/mpeg,mpegversion=[1,2]

Caps

● Special caps: ANY and EMPTY caps

● Generic set operations defined on them:
– Intersect, is-subset, can-intersect

● Caps features for advanced use cases
– video/x-raw(memory:GstGLMemory), width=1920,
height=1080

– Conjunction of additional constraints for the media type
● Pads negotiate a single fixed caps for data flow

Caps

● Conventions:
– Naming conventions for media types, caps features and fields

(lower case letters, numbers, no spaces)
– Types often omitted, GStreamer will try to guess the right type

when converting a caps string into a caps object internally. Which
mostly works, unless you do things like framerate=30 which
would end up being framerate=(int)30 and not (fraction)30/1.

– Sometimes fields have unexpected types, e.g. level=(string)5
(here level=2b is a possibility too)

Caps

$ gst-inspect-1.0 vorbisenc

[…]

Pad Templates:

 SRC template: 'src'

 Availability: Always

 Capabilities:

 audio/x-vorbis

 SINK template: 'sink'

 Availability: Always

 Capabilities:

 audio/x-raw

 format: F32LE

 rate: [1, 200000]

 channels: [1, 255]

 layout: interleaved

[...]

GStreamer Tools – gst-typefind-1.0

● Uses the typefinders to detect the Caps of a file
● Examples:

– $ gst-typefind-1.0 test.mp3
test.mp3 – application/x-id3

– $ gst-typefind-1.0 test.avi
test.avi – video/x-msvideo

GStreamer Tools – Example 3

● Let‘s go back to the video pipeline
– gst-launch-1.0 videotestsrc ! videoconvert ! autovideosink

● This always shows a small 320x240 video
● Enforce a higher or smaller resolution by inserting a capsfilter after

the source
– You can just write caps between two ! or use the capsfilter element and

set the caps property on it
– What happens if you set incompatible caps? Try audio/x-raw instead of

video/x-raw

Application <-> GStreamer Communication

GStreamer Tools – Example 4

● Add verbosity and message output to gst-launch output:
– gst-launch-1.0 -vm audiotestsrc num-buffers=2 ! fakesink silent=false

● Can you find all the different messages and events in the
output? What other parts do you find?

Threads

● GStreamer relies heavily on threads
● Data-flow and serialized events happen in streaming threads of

pads
● Queues allow explicit insertion of new threads

Threads

● Generally need to add a queue before N-1 elements and after
1-N elements

● gst-launch example:
– gst-launch-1.0 \

 audiotestsrc freq=440 volume=0.3 ! queue ! a. \
 audiotestsrc freq=880 volume=0.3 ! queue ! a. \
 adder name=a ! audioconvert ! autoaudiosink

Threads

● gst-launch example:
– gst-launch-1.0 \

 filesrc location=test.ogg ! oggdemux name=d \
 d. ! queue ! vorbisdec ! audioconvert ! audioresample !
autoaudiosink \
 d. ! queue ! theoradec ! videoconvert ! videoscale !
autovideosink

Data-flow

● Data-flow can happen in pull- or push-mode
– Demuxers generally prefer working in pull-mode but should be able to

work in push mode too
– Decided in READY->PAUSED during pad activation with scheduling

query
● Element that starts a streaming thread and pushes data

downstream is said to drive the (part of) the pipeline

Clocks & Synchronization

● Elements can provide a clock, pipeline selects
● Sinks and live sources synchronize to that clock
● Different kinds of time inside the pipeline

Synchronization & Seeks

● Buffer timestamps mapped to running time with Segment, configured via segment event
– start and stop position, buffers outside are dropped
– base offsets and rate to shift and scale the timestamps

● seek Events instruct elements to jump to a different position (stream time) and configure a
new segment
– Different start/stop, rate can be adjusted
– Flags to specify accuracy and speed of seeks

● Sinks render a Buffer when clock_time – base_time reaches the running time of the Buffer
● The sync property on sink elements controls whether they synchronise their output to the

clock

Example 5

● gst-launch-1.0 \

filesrc location=cooldance.ogg ! oggdemux name=d \

 d. ! queue ! vorbisdec ! audioconvert ! audioresample !
autoaudiosink \

 d. ! queue ! theoradec ! videoconvert ! videoscale !
autovideosink

● Now try adding 'sync=false' to the sinks

Example 6

● Playbin – easy playback
● gst-launch-1.0 playbin

uri=https://gstreamer.freedesktop.org/media/incoming/Pixar
%20-%20Geri\'s%20Game.avi

● gst-launch-1.0 playbin uri=file:///$PWD/big-buck-bunny_trailer-
streamable.webm video-sink="glupload ! gleffects_sobel !
glimagesink"

Creating Content

● Capture/input -> encoders -> muxers -> output

sink

sink

muxer

src

sink_01

queue

srcsink

sink_02queue

srcsink

audio encoder

srcsink

audio src

src

video encoder

srcsink

video src

src

Synchronisation

● What keeps audio and video in sync?
● Audio and video devices likely provide timestamps on a clock

that's not the pipeline clock
● Sources translate the timestamps
● Buffers from live sources are timestamped according to the

running time of the pipeline using the pipeline clock
– Whatever clock that is

Writing Apps

Documentation

● GLib
– https://developer.gnome.org/glib/stable/
– https://developer.gnome.org/gobject/stable/

● GStreamer
– http://gstreamer.freedesktop.org/documentation/

● Application Developer Manual
● Core Reference
● Core Libraries Reference
● GStreamer Base Plugins Libraries Reference
● Plugin Modules Reference (esp. gst-plugins-base)

https://developer.gnome.org/glib/stable/
https://developer.gnome.org/gobject/stable/

Example 7

● Converting gst-launch-1.0 lines:
– gst_parse_launch(“pipeline string”)

● gst_element_factory_make()
– Create individual elements

● See the playback.c example in the repo

Fancy Clocks

● GStreamer includes implementations of remote clocks
– GStreamer NetClock
– NTP
– PTP

● These can be used to synchronise to a master timeline
● Distributed recordings / capture
● Multi-room/device synchronised playback

Example 8

● Network synchronised playback using the GStreamer netclock
– See the network-clocks/ sub-directory in the repo

● ./network-clocks/netclock-server
● on another machine:
● ./playback-sync -c $serverIP -p $port -b $basetime ../big-buck-

bunny_trailer-streamable.webm

53

Clean Shutdown of Live Sources

● If you are capturing from a live source and recording to a file in
a non-streaming format (i.e. one where headers need to be
updated at the end and an index needs to be written), you can't
just stop recording by setting the pipeline to NULL state

● The file would be closed, and the muxer won't be able to finalise
headers and index

54

Clean Shutdown of Live Sources

● To shut down a live recording pipeline (or any other running pipeline before it 'naturally'
EOSes), do this:
– gst_element_send_event (pipeline, gst_event_new_eos())
– This will inject an EOS event at the source(s), which will then make its way down

the pipeline through the muxer, which will then finalise the file
– When the EOS event reaches the sink, an EOS message will be posted on the bus
– The application can pick the EOS message off the bus and knows it's safe to set

the pipeline to NULL state now.
– Examples: MP4, Matroska/WebM (to some extent)

● gst-launch-1.0 does this when passed the -e argument

55

Example 9

● Record something from your webcam:
● gst-launch-1.0 -e v4l2src ! videoconvert ! x264enc ! mp4mux !

filesink location=test.mp4
– This may take some time to start, depending on which GStreamer

version you have
– Hit ctrl-c to end the recording

56

Network Transmission

● GStreamer has extensive support for network protocols
– RTP
– RTMP
– HTTP
– RTSP

● For playback, and for production

57

Example 10

● Send content over the network via RTP
● gst-launch-1.0 videotestsrc ! avenc_mpeg2video !

mpegvideoparse ! rtpmpvpay ! Udpsink
– Generate a test pattern and send as MPEG2 RTP/UDP

● gst-launch-1.0 udpsrc caps="application/x-rtp,clock-
rate=90000,payload=32" ! rtpjitterbuffer ! rtpmpvdepay !
decodebin ! autovideosink
– Receive UDP and depayload, decode, display

58

RTSP Server

● GStreamer provides the gst-rtsp-server module
● Makes it easy to turn the output of a pipeline into an RTSP URL
● We also have (or WIP) HLS, DASH, WebRTC

59

Example 11

● See the test-rtsp-uri example in the repo
● ./test-rtsp-uri ./big-buck-bunny_trailer.webm
● In a player:

– gst-play-1.0 rtsp://127.0.0.1:8554/test
– (or on another machine, of course)

60

Device Specific

● gst-omx – OpenMAX integration
● Android / iOS capture/encode/decode
● Raspberry Pi

– gst-rpicamsrc
● i.MX6

– gstreamer-imx
● V4l2 video encoder/decoder APIs

61

Example 12

● From the gst-rtsp-server examples
./examples/test-uri "(rpicamsrc bitrate=750000 intra-refresh-type=both drc=medium ! \

 video/x-h264,profile=baseline,width=1280,height=720,framerate=10/1 ! \

 h264parse config-interval=1 ! rtph264pay name=pay0 pt=96)"

62

Thank you!

Further questions?

Jan Schmidt
Email: jan@centricular.com
IRC: thaytan Twitter: @thaytan

mailto:jan@centricular.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

